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ABSTRACT
In the framework of particle-based Vlasov systems, this paper reviews and analyses different
methods recently proposed in the literature to identify neighbours in 6D space and estimate the
corresponding phase-space density. Specifically, it compares smoothed particle hydrodynamics
(SPH) methods based on tree partitioning to 6D Delaunay tessellation. This comparison is
carried out on statistical and dynamical realizations of single halo profiles, paying particular
attention to the unknown scaling, SG, used to relate the spatial dimensions to the velocity
dimensions.

It is found that, in practice, the methods with local adaptive metric provide the best phase-
space estimators. They make use of a Shannon entropy criterion combined with a binary
tree partitioning and with subsequent SPH interpolation using 10–40 nearest neighbours. We
note that the local scaling SG implemented by such methods, which enforces local isotropy of
the distribution function, can vary by about one order of magnitude in different regions within
the system. It presents a bimodal distribution, in which one component is dominated by the
main part of the halo and the other one is dominated by the substructures of the halo.

While potentially better than SPH techniques, since it yields an optimal estimate of the
local softening volume (and therefore the local number of neighbours required to perform the
interpolation), the Delaunay tessellation in fact generally poorly estimates the phase-space
distribution function. Indeed, it requires, prior to its implementation, the choice of a global
scaling SG. We propose two simple but efficient methods to estimate SG that yield a good
global compromise. However, the Delaunay interpolation still remains quite sensitive to local
anisotropies in the distribution.

To emphasize the advantages of 6D analysis versus traditional 3D analysis, we also compare
realistic 6D phase-space density estimation with the proxy proposed earlier in the literature,
Q = ρ/σ 3, where ρ is the local 3D (projected) density and 3σ 2 is the local 3D velocity
dispersion. We show that Q only corresponds to a rough approximation of the true phase-
space density, and is not able to capture all the details of the distribution in phase space,
ignoring, in particular, filamentation and tidal streams.

Key words: methods: data analysis – methods: numerical – galaxies: haloes – galaxies:
structure – dark matter.

1 IN T RO D U C T I O N

There are many methods to analyse dark matter haloes structures. A
standard approach involves investigating spherically averaged den-
sity profiles, such as the Hernquist profile (Hernquist 1990), the
NFW profile (Navarro, Frenk & White 1997), the Moore profile
(Moore et al. 1998, 1999) and the Stoehr profile (Stoehr 2006).

�E-mail: maciejewski.michal@gmail.com (MM); colombi@iap.fr (SC);
alard@iap.fr (CA); bouchet@iap.fr (FB); pichon@iap.fr (CP)

More sophisticated methods developed recently involve different
elliptical density profiles (Jing & Suto 2002; Hayashi, Navarro &
Springel 2007). Another alternative consists of analysing veloc-
ity profiles, e.g. Romano-Diaz & van de Weygaert (2007), for a
review.

Other investigations look in more details at halo detection as
well as their internal substructures, the subhaloes. They usually
use a two-step procedure: they first find haloes and substructures
in position space, then use velocity information to apply binding
criteria. Many such schemes are found in the literature, the simplest
being the friend-of-friend (FOF) algorithm (Huchra & Geller 1982).
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More advanced methods rely e.g. on the SKID algorithm (Stadel
2001) or on SUBFIND (Springel et al. 2001).

However, thanks to increased computational power, it now be-
comes possible to perform more detailed analyses that combine
simultaneously velocity and position information. Indeed, modern
simulations now reach enough resolution to identify structures and
substructures in the full, 6D phase space. Recent investigations
in this topic studied phase-space dark matter profiles (Taylor &
Navarro 2001), phase-space density estimation by using 6D Delau-
nay tessellation (SHESHDEL) (Arad, Dekel & Klypin 2004), or by
using binary tree methods with smoothing (FiEstAS) (Ascasibar &
Binney 2004), and a variety of different binary tree and 6D smoothed
particle hydrodynamics (SPH) methods with local adaptive metric
in the EnBiD package (Sharma & Steinmetz 2006).

Two noticeable results were derived within these investigations:
the measurement of a universal logarithmic slope for the phase-
space density f as a function of radius r, f (r) ∼ r−α , with α ∼ 1.875
(Taylor & Navarro 2001), and the observation of a universal profile
for the phase-space volume occupation function, v(f ) ∝ f −2.5±0.05

(Arad et al. 2004; Ascasibar & Binney 2004).
These results depend on the quality of the phase-space density

estimators, a topic to which we devote this paper. We carefully
analyse and cross-compare the SHESHDEL, FiEstAS and EnBiD
estimators.

This paper is organized as follows. Section 2 describes the various
generic1 phase-space estimators and the corresponding concepts.
We pay particular attention to the issue of the unknown scaling, SG,
which relates position coordinates and velocity coordinates prior to
the phase-space distribution function measurement. In Section 3 we
test the phase-space estimators in three realizations of a halo profile:
(i) a pure Hernquist isotropic halo, (ii) a composite Hernquist halo
(a main Hernquist component with Hernquist subhaloes) and (iii) a
halo extracted from a standard cold dark matter (CDM) cosmolog-
ical simulation. To have a better understanding of the results, more
thorough analyses are performed in Section 4 focusing on (i) the
local number of neighbours built by the Delaunay tessellation and
on (ii) the local scaling between positions and velocities given by
the adaptive metric of EnBiD. Section 5 shows the advantages of
full phase-space analysis, with respect to more classical approaches
such as the proxy Q = ρ/σ 3. Finally, Section 6 wraps up.

2 PHASE-SPACE DENSITY ESTIMATION

There are a few common approaches to measure 6D phase-space
density, f (x, v), for unrelaxed systems.

A straightforward method involves dividing phase space into a
Cartesian grid and approximating phase-space density by counting
particles in each bin. While this clearly works quite well in 3D
space, it starts to be problematic in six dimensions. Even if we
choose a poor-quality resolution, e.g. 100 bins along each axis, we
get in the end a very large number of cells, e.g. 1012, and, for modern
simulations with e.g. 107 particles, almost all the cells will be empty.
This basic example shows that for improved phase-space estimation,
one needs to go well beyond the naive binning algorithm. Note as
well that to achieve a level of detail in phase space comparable to
what is usually obtained in position space, one needs a simulation
with an extremely large number of particles.

A more sophisticated, frequently used method for density esti-
mation in position space, uses smoothing with k nearest neighbours

1 Applicable to systems without specific symmetries.

found with standard tree techniques; it can be easily generalized
to the 6D case. Assuming for the sake of simplicity that all par-
ticles have the same mass mp, if, for each particle, k neighbours
are enclosed in a 6D ball of volume V6, then the local phase-space
density can e.g. be measured with the simile following estimator,
mpk/V6, which corresponds to a top hat kernel. In practice, more
sophisticated kernels are used, i.e. each neighbour contributes to
the measured density with a weight defined by a smooth func-
tion, usually an SPH kernel. This kind of algorithm was proposed
for phase-space density estimation by Sharma & Steinmetz (2006)
(hereafter S06). It however requires the proper set-up of a metric in
6D space (velocity/position scaling).

In this paper we investigate more accurate algorithms developed
recently in the literature, including improvements of the above SPH
technique.

The first method, discussed in Section 2.1, relies on 6D Delaunay
tessellation (Arad et al. 2004, hereafter Arad04). The big advantage
of this method is that it is parameter free, fully adaptive, while
each particle has a natural neighbourhood. In practice, however, the
Delaunay tessellation needs some additional smoothing. It is also
very time and memory consuming (Arad04; Weygaert & Shaap
2007). It requires, similarly as the straightforward SPH method just
mentioned above, a proper set-up of a metric in 6D space.

The second group of algorithms was proposed by Ascasibar &
Binney (2004, hereafter A04) and improved by S06. The first step
of their method, detailed in Section 2.2, is simple and robust. Space
is divided with the help of a binary tree into disjoint hyperboxes
with one particle in each leaf node. Since each particle is in one
hyperbox with volume V, its local phase-space density could be
directly estimated from the equation f = mp/V . Yet the phase-
space density derived from this estimator is quite noisy: it is almost
impossible to use it for practical purposes. Hence additional steps
were proposed to make it useful. First, the binary tree may be
improved with the help of a Shannon entropy criterion combined
with boundary particles correction (S06). Secondly, some additional
smoothing should be performed. There are few options to do so, as
proposed by A04 and S06 and described in Section 2.3, ranging
from (i) a hyperbox smoothing following the philosophy of the
SPH method, (ii) an SPH method with a local adaptive metric, to
(iii) anisotropic SPH methods. The main advantage of this type of
algorithm compared to the tessellation methods is time and memory
consumption.

In the next sections, we describe each of these methods in turn and
follow with a detailed discussion on the issue of position/velocity
scaling (Section 2.4). The reader may refer to Table 1 and to the
summary in Section 6, if needed.

2.1 The Delaunay tessellation

The idea of using a Delaunay tessellation was primarily imple-
mented to estimate density and velocity fields in cosmological sim-
ulations (Bernardeau & van de Weygart 1996; Schaap 2007). The
corresponding algorithm, called the Delaunay Tessellation Field
Estimator (DTFE), was also used to demonstrate the advantages of
the tessellation over SPH methods (Pelupessy, Schaap & van de
Weygaert 2003). In particular, the DTFE method better captures
the abrupt transitions between regions of different densities and
provides a better estimate for high densities.

The main parts of the DTFE algorithm were used by Arad04 to
develop their 6D phase-space density estimator called SHESHDEL.
Beside the position–velocity scaling problem that is addressed in
Section 2.4 and in Section 4.2, the method itself is parameter free and
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Table 1. The various 6D estimators tested in this paper.

The estimator name Description

SPH Smoothing with spherical Epanechikov kernel using N neighbours, global scaling

SPH-AM Smoothing with spherical Epanechikov kernel using N neighbours, local adaptive metric

ASPH-AM Anisotropic smoothing with ellipsoidal Epanechikov kernel, using N neighbours, local adaptive metric

FiEstAS Smoothing with the hyperbox kernel, local adaptive metric

DTFE Estimation from the Delaunay tessellation (equation 2), global scaling

Smooth DTFE Estimation from the Delaunay tessellation with spherical smoothing (equation 8), global scaling

presents well-behaved statistical properties. Its main disadvantage
is that it is computationally costly, although it scales like
N1.1 log N (Arad, in preparation), where N is the number of par-
ticles: the construction of a Delaunay tessellation of approximately
N ∼ 106 particles requires almost three days of calculation on a mod-
ern computer and the full output of 109 Delaunay cells amount to
40 GB of data in the end.

From a 6D Delaunay tessellation, it is easy to estimate the phase-
space density, f (x, v). Space is indeed partitioned into joint but non-
overlapping 6D polyhedrons – Delaunay cells, each one defined by
seven vertices. There is a unique 6D sphere passing through these
seven vertices, which by definition of the tessellation, does not en-
compass any other particle from the sample. Let {D1

i , D
2
i , . . . , D

Ni

i }
be the Ni Delaunay cells around particle i. We can define a
macro-Voronoi cell Wi by joining all Delaunay cells containing
particle i:

Wi =
⋃

j=1,...,Ni

D
j

i . (1)

Then it is straightforward to define an estimate of the phase-space
density for each particle i of mass mp as

fi = 7
mp

|Wi | , (2)

where |Wi | is the volume of the macrocell and the factor of 7
accounts for the fact that each Delaunay cell contributes to the
density of seven particles. In practice, as mentioned earlier, the
corresponding estimated phase-space density is very noisy, and one
must introduce some additional smoothing. Let

fDi
= 1

7

∑
j∈Di

fj , (3)

be the average phase-space density defined for Delaunay cell Di .
One can then define a smoother phase-space density estimator as

f ′′
i =

∑
j=1,...,Ni

f
D

j
i
|Dj

i |

|Wi | , (4)

where j indexes all Delaunay cells around particle i and |Dj
i| repre-

sents the volume of each Delaunay cell.
For simulations without e.g. periodic boundaries, the phase-space

density of particles near the edge of the computing domain can be
underestimated. This is for instance the case when the sample has
been cut from a bigger cosmological volume. To cope with this edge
effect problem, one can introduce another definition for the smooth
phase-space density estimator. Consider particle i, surrounded by
its Delaunay cells Dj , and let d be the distance between this particle
and its closest neighbour (Fig. 1). Then, the minicell around particle
i is defined as the collection of Delaunay cells D′

j , which are similar
to Dj but are scaled in such a way that each edge in D′

j containing

Figure 1. A method of smoothing which is appropriate for a Delaunay
tessellation and corrects for local anisotropies: it involves redefining the
local volume in such a way that one gets in the end a more spherical
minicell.

particle i is exactly of length d. The volume of D′
j reads

|D′
i | = |Di |

∏
j∈Di

d6

|eij | , (5)

where |eij | is the length of the segment joining particle i and j
in Delaunay cell Di . As a result, a natural phase-space density
estimator reads

f ′′′
i =

∑
j=1,...,Ni

f
D

j
i
|D′j

i |∑
j=1,...,Ni

|D′j
i |

. (6)

However, it might be better to use linear interpolation to estimate
the phase-space density in each minicell to perform additional local
noise filtering:

fD′
i
= fDi

+ d

7

∑
j∈Di

fi − fj

|eij | . (7)

In the end we can thus define a phase-space density estimator with
interpolated density as follows:

f ′
i =

∑
j=1,...,Ni

f
D′j

i

∣∣∣D′j
i

∣∣∣
∑

j=1,...,Ni

∣∣∣D′j
i

∣∣∣ . (8)

The minicells are more regular and spherical, so both phase-space
density estimators f ′ and f ′ ′ ′ are expected to be less sensitive to
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local fluctuations and local anisotropies due to noise and edge
effects.

Note that all of the above smoothing methods are based on natural
neighbour interpolation techniques (Weygaert & Shaap 2007). In
what shall follow, although we studied all the estimators, f i , f ′′

i , f ′
i

and f ′′′
i , we shall present explicit results only on f ′′

i (equation 8) and
on f i (equation 2).

2.2 Tree partitioning

As discussed in the introduction of Section 2, the main point of the
algorithm FiEstAS2 proposed by A04 and later improved by S04 in
the EnBiD3 implementation, is the division of space into a binary
tree. In FiEstAS, the splitting axis is chosen alternatively between
position space and velocity space, then in each of these respective
subspaces, the axis with highest elongation, 〈x2

i 〉 − 〈xi〉2, is split.
This splitting criterion helps the cells to preserve a shape as cubic
as possible.

However, a visual inspection of position and velocity diagrams
of typical simulations (Fig. 11) shows that position space contains
more structures, and thus more information than velocity space.
As a result, one can argue that for optimal accuracy, the splitting
should occur more often in position space than in velocity space.
This observation was used in the EnBiD algorithm to define a bet-
ter splitting criterion. Before splitting occurs, one has to find the
subspace (velocity or position) in which it should be performed. To
do that, the Shannon entropy, S, is calculated after dividing each
subspace into N equal size bins4:

S = −
N∑

i=1

ni

N
log

ni

N
, (9)

where ni is the number of particles in each bin. The subspace which
has to be split is the one with smallest entropy. Finally, the direction
of splitting is chosen again using the highest elongation criterion,
to preserve a close to cubic shape.

As for Delaunay tessellation, correction for edge effects is crucial
in the binary tree partition algorithm. To illustrate that point, it was
shown in S06 that for 106 particles uniformly distributed in a 6D
spherical region, about 79 per cent of them lie near the border, com-
pared to 5 per cent in the 3D case. This reflects the so-called curse
of dimensions. The natural shape of local border in the binary tree
partition algorithm is a hypercube. When the data do not preserve
locally this shape, the volume occupied by the boundary particles
tends to be overestimated, hence their phase-space density tends to
be underestimated. This bias is moreover expected to worsen and
to propagate further away from the edges if additional smoothing is
performed.

Both FiEstAS and EnBiD redefine borders to correct for edge
effects. While FiEstAS does it only for the tree leaves, EnBiD
applies the correction to all the nodes of the tree, in order to insure
proper entropy calculation and to better estimate the phase-space
density of small structures found in the halo.5

2 Field Estimator for Arbitrary Spaces.
3 Entropy Based Binary Decomposition.
4 The choice of S06 is N to be equal to the number of particles contained in
the subspace.
5 See section 2.3 of S06 for more details.

2.3 Smoothing

From these tree methods, one could estimate naively the phase-
space density by exploiting directly the information stored in the tree
structure, as argued in the end of the introduction of Section 2, but
measurements performed that way would be rather noisy: additional
interpolation, should be applied to the data in order to achieve a good
measurement of phase-space density. A04 and S06 investigated a
few smoothing procedures that we discuss now.

Let us first describe the smoothing method proposed by A04
(called later FiEstAS smoothing). The main idea comes from SPH
techniques, but the smoothing kernel is a hyperbox rather than a
hypersphere. This treatment avoids the need for a definition of a
local metric. First, the mass of each particle is distributed uniformly
over its leaf volume. Then, a hyperbox of volume Vs, centred on this
leaf and with the same axis ratio, is found, such that it contains a
mass Ms, which basically defines the kernel size. Local phase-space
density is then calculated from the equation f = Ms/Vs. In our
investigations, we shall use mainly the Ms = 2mp value proposed
by S06 (while A04 suggest Ms = 10mp).

The other approach uses a classic SPH technique. For our inves-
tigations, we shall use the Epanechikov kernel

W (x, h) = fd

⎧⎨
⎩ 1 − ∑

i=1 6
(

xi

hi

)2
, 0 ≤ xi/hi ≤ 1,

0, xi/hi > 1,

(10)

with an additional bias correction. As mentioned in S06, this esti-
mator seems to give the best results for SPH phase-space estimation.

One of the disadvantages of the SPH method is the way it han-
dles strong transitions between regions of very different densities,
as illustrated by Fig. 2(a). The key point is that the SPH method is
not able to capture correctly strong variations of the density local
curvature. Because of the spherical shape of the kernel and the fixed
number of neighbours used to perform the calculations, the density
will be underestimated near the edge of the regions with higher
density (particle A), or more generally in regions with significant
negative local curvature. On the other hand the density will be over-
estimated near the edge of the low-density regions (particle B), or in
regions with significant positive local curvature. One way of resolv-
ing this issue, and of better capturing filamentary structures such
as in Fig. 2(a), is to use an anisotropic SPH kernel, which adapts

Figure 2. Biases in the SPH density estimation and potential advantages of
anisotropic SPH methods: (a) SPH method: density is underestimated for
particle A and overestimated for particle B; (b) ASPH method better traces
local structures and should lead to better density estimation.
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locally to the shape of structures and is thus more appropriate to
capture to local curvature variations. First, the NA nearest neigh-
bours are found for each particle, which allows one to compute a
deformation tensor H that is used to define a local ellipsoid with NB

nearest neighbours (usually NA > NB). Each particle contained in
this ellipsoid contributes to the phase-space density with the weights
given by the SPH kernel, scaled properly to take into account the
ellipsoid shape (Fig. 2b).

Note that, in addition to the issues described in Fig. 2, the density
calculated with SPH methods presents some non-trivial biases due
to local Poisson shot noise which can in part be corrected for (see
S06 for details).

2.4 Position–velocity ‘metric’ correction

There is a last one important problem that arises when one aims to
estimate phase-space density. In order to perform some local phase-
space density estimation, one needs to find a way to join position
space and velocity space, or in other words to define a proper met-
ric that allows one to estimate local distances and local volumes
in phase space. This generic problem does not have an obvious
solution. Let us first discuss that issue and then detail the imple-
mentations to resolve it for the phase-space estimators used in this
paper.

2.4.1 Coarse-grained versus fine-grained phase-space density

The dynamics of dark matter is usually modelled by a self-
gravitational collisionless fluid which follows the so-called Vlasov–
Poisson equations:6

df

dt
≡ ∂f

∂t
+ v

∂f

∂x
− ∂φ

∂x
∂f

∂v
= 0, (11)

∇2φ(x, t) = 4πG

∫
f (x, v, t)dv. (12)

Because it is very difficult to solve these equations directly, the con-
tinuous fluid formulation is usually approximated by collisionless
particles which follow the classical gravitational Newtonian equa-
tions, hence producing Monte Carlo realizations of this set, with
additional softening to maintain the forces bounded. The most im-
portant question here is how this approximation affects the phase-
space density properties. Liouville theorem states that the phase-
space distribution function remains constant along trajectories of
the system

f (x(t), v(t), t) = constant. (13)

This is true for the smooth, fine-grained phase-space density f. In N-
body simulations, it is in practice possible to probe only the coarse-
grained phase-space density, f̄ , which is the average of f over a
small but finite volume (Binney & Tremaine 2008). This quantity
does not follow the Liouville theorem anymore because of mixing
processes occurring at small scales (Tremaine, Henon & Lynden-
Bell 1986; Arad04). Furthermore, the measurement of f̄ depends
highly on the way the coarse-graining volume is defined, hence
in particular on the local scaling to be applied to velocities versus
positions. To have a proper measurement of f̄ that approaches as
much as possible the fine-grained distribution function from the

6 Also referred to as collisionless Boltzmann–Poisson equations.

dynamical point of view, or some sensible local average of it, one
would need the knowledge of the whole dynamical history of the
system.

One way to overcome this problem is to solve numerically
Vlasov’s equations using a more sophisticated approach than the
simple N-body method, where the phase-space distribution func-
tion is modelled by small elements of metric, such as ellipsoid
‘clouds’, that sum up to a dynamically meaningful coarse-grained
version of the distribution function. This method is discussed in de-
tail and applied in (1 + 1) dimensions in Alard & Colombi (2005).
Of course the generalization of such a method to six dimensions
is quite costly. However, a simple alternative, in the spirit of this
method, would be to attach to each particle of a N-body simulation
the information corresponding to the local phase-space volume (or
the local metric), which would be followed during the evolution
of the system (Vogelsberger et al. 2008). Note that we then fol-
low a sparse sampling of the fine-grained distribution function as
long as the dynamical effects due to the discrete particle representa-
tion are negligible. Then the appropriate shape for the phase-space
element used to measure the coarse-grained distribution function
would be given by a local average on a number of neighbour-
ing particles in phase space, as is achieved by the adaptive SPH
method.

Finally, if such an information is not available, and without sup-
plementary prior on the dynamical state of the system, one can just
try to find the best coordinate transform that preserves local isotropy
within the coarse-grained volume. This method basically assumes
that the systems evolved from a smooth distribution function. In that
sense, for CDM haloes, it only traces correctly the coarse distribu-
tion after relaxation to a quasi-steady state (i.e. a few dynamical
times after collapse). Note that a simple application of this idea
to find a global scaling between position and velocities basically
produces the system of coordinates where the velocity scatter is of
the same order of the positions scatter.

To illustrate this discussion, Fig. 3(1) shows one of the outputs of
a 2D phase-space simulation of Alard & Colombi (2005), using the
cloudy method (briefly sketched above). The system was evolved
during approximately 40 dynamical times from an initial top-hat
distribution function slightly apodized at the edges. Fig. 3(2) shows
the same realization, but the position coordinate is scaled in such a
way that both velocities and positions show the same spread: this is
the natural system of coordinate for a global definition of the scaling
to be used between positions and velocities prior to the definition
of a small round coarse-graining volume.

In the CDM scenario, initial conditions can by approximated by a
3D sheet (small dispersion in velocity space) immersed in 6D phase
space, which subsequently evolves in time and gains a complex
shape (without loosing its connectivity or volume as stated by the
Liouville theorem). The equivalent of such a sheet in our 2D phase-
space representation would be e.g. the curve (f), accurately followed
by many cloud elements. As mentioned above, Vlasov–Poisson
equations are usually numerically resolved relying on a particle
representation. After many time-steps, because of variations of the
local force field, particles initially close by depart from each other
(g). Mixing processes occur at small scales, and the phase-space
sheet, poorly modelled by the particles, loses its fine structures.
The way the coarse-grained phase-space density f̄ is calculated is
shown in e.g. (2d). The use of a finite local volume for computing f̄

results in the averaging of the phase-space density over many curves
– or sheets in six dimensions. From now on, unless otherwise stated,
we shall skip the bar and use the f symbol for the coarse-grained
phase-space density.
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Figure 3. Illustration from a 2D simulation of Alard & Colombi (2005) of the velocity–position scaling and the various methods used to measure the
coarse-grained phase-space distribution function. (1) The left-hand panel shows the phase-space distribution function in the ‘global’ coordinate system used
by the authors. (2) The right-hand panel shows a scaled version of it in such a way that the same spread is observed in x and v coordinates. We call that a
‘local’ system of coordinates as the scaling can be global as shown here, or local, as discussed in the main text. (1a) SPH spherical kernel in global coordinates,
(2a) becomes ellipsoidal in local coordinates and is not optimal; (1b) SPH with a local adaptive metric presents an ellipsoidal kernel in global coordinates,
(2b) but is set up in such a way that the kernel is spherical in local coordinates; (1c) anisotropic SPH with a local adaptive metric in global coordinates, (2c)
in local coordinates. 1d) FiEstAS smoothing in global coordinates (2d) presents a hypercubical kernel in local coordinates; (f) local clouds resolve accurately
phase-space structures, but (g) particles from cosmological simulations only sparse sample them.

2.4.2 Solutions for the position–velocity scaling

Inspired by the discussion in previous paragraph, we now propose
two ways of fixing the position–velocity scaling:

(i) A global scaling factor between positions and velocities,
which will be applied to the standard SPH and Delaunay tessel-
lation algorithms. This global factor tries to make the phase-space
distribution function globally isotropic, i.e. with the same spread in
velocities and in positions.

(ii) A local scaling factor that depends on phase-space coordinate
(x, v), and that tries to make the phase-space distribution function
locally isotropic. This local scaling factor is implemented by con-
struction in FiEstAS and its improvement, EnBiD, as detailed below.
It will be used as well when additional smoothing is performed with
SPH or ASPH techniques. In that case we shall denote the methods
by SPH-AM and ASPH-AM, respectively.

(i) Global scaling
For the global scaling method depending on one parameter, SG, the
metric transform can be written in the form(

dx ′

dv′

)
=

(
1/

√
SG 0

0
√

SG

) (
dx

dv

)
. (14)

We test here two different ways of setting SG, which apply to sin-
gle dynamical systems, such as the CDM haloes analysed in this
paper. Such a global scaling finds a transformation that changes
e.g. Fig. 3(1) to Fig. 3(2).

The first scaling uses simple dynamical arguments that lead to a
comparable scatter in velocity and position space of the phase-space
distribution function, or in other worlds to a ‘more round’ shape of
the cloud representing f (x, v). It relies on the fact that dark matter
haloes are known to be well fitted by the NFW profile (Navarro

et al. 1997). In particular, within that model, we use the relation

r200 = v200

10H (z)
, (15)

where r200 and v200 are the viral radius and the viral velocity of
the halo, respectively, and H(z) is the Hubble constant in units
of km s−1 kpc−1 (Schneider 2006). For the haloes analysed in this
paper, z = 0 and H(0) = 0.1 h. In that case, the natural set of coor-
dinates, which fixes properly the global scaling between positions
and velocities, simply uses distances expressed in units of kpc h−1

and velocities in km s−1.
The second method, more sophisticated, should reach approxi-

mately the same scaling. It involves attempting to enforce global
isotropy of the distribution of particles in phase space. To achieve
that, the distances of each particle to its closest neighbour in position
subspace and in velocity subspace, are computed, which allows us
to estimate the probability distribution functions of these distances,
p(r) and p(v). The global scaling Sdist between the two subspaces
is the one where the maximum of p(r) and the maximum of p(v)
coincide.

(ii) Local scaling
Obviously, although it presents the advantage of being simple to
implement and robust, the global scaling is not optimal. However,
it is possible to enforce, to some extent, local isotropy of the phase-
space distribution function by examining the local neighbourhood
of each particle, as is implemented in the FiEstAS and EnBiD
algorithms.

In FiEstAS the natural local scaling between velocity subspace
and position subspace is simply determined from the axis ratio of
the tree leaf containing the particle [which is equivalent to pass
from Fig. 3(1d) to Fig. 3(2d)]. By construction of the tessellating
tree, the local isotropy between both subspaces should be preserved
in the first approximation, as the calculation of the final smoothing
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hyperbox preserves this axis ratio. For the modification of FiEstAS
proposed by the EnBiD algorithm, the splitting of the binary tree is
improved by the calculation of Shannon entropy, which in principle
warrants a better local assignment of the metric frame.7

Finally, one can perform additional SPH or anisotropic SPH inter-
polation in the local metric frame determined by EnBiD, which leads
to our SPH adaptive metric algorithms (SPH-AM and ASPH-AM).
Prior to SPH or ASPH interpolation, the phase-space coordinates
are scaled in such a way that the local hyperbox corresponding to
the leaf containing the particle becomes hypercubical [Fig. 3(1d) to
Fig. 3(2d), to obtain Fig. 3(2b) and Fig. 3(2c)]. Of course the biases
expected in SPH and ASPH interpolations mentioned in the end of
Section 2.3 are still present, even with this local metric approach.

To summarize, we see that FiEstAS method with EnBiD improve-
ment corresponds to hyperbox smoothing with adaptive metric. The
only thing that changes between SPH-AM and ASPH-AM is the
shape of the kernel used to perform the smoothing.

3 NUMER ICAL EXPERIMENTS

3.1 Hernquist profile

In order to test the various above described methods, we first ex-
amine control ‘phase mixed’ samples for which there are analyt-
ical solutions.8 Hence, we follow A04 and S06 and generate a
Hernquist isotropic profile (Hernquist 1990). In that case, the pro-
jected density distribution is given by

ρ(r) = 1

2π3

M

(r/a)(1 + r/a)3
, (16)

where M is the halo total mass and a is a scalelength. We follow
exactly the prescriptions of A04 and S06 to create a random set of
positions and random velocities obeying the appropriate distribu-
tion, relying on the fact that in this model, the phase-space density
distribution function, f, depends only on energy E,

E = v2

2
+ φ(r) = v2

2
− GM

a

1

1 + r/a
, (17)

where r and v correspond to position and velocity, respectively. At
equilibrium, the distribution function reads

ft(E) = M
3 sin−1(q) + q

√
1 − q2(1 − 2q2)(8q4 − 8q2 − 3)

4a3π3(2GM/a)3/2(1 − q2)5/2
,

(18)

with

q =
√

− E

GM/a
. (19)

In order to have a halo with realistic properties, we would like it
to follow equation (15), i.e. vvir = SI rvir (in our case rvir  r200),
with SI = 1.0 h km s−1 kpc−1. The circular velocity of the Hernquist
profile reads

vcir(r) =
√

GMr

r + a
. (20)

7 Note that the border corrections mentioned at the end of Section 2.2 may
have some significant impact on the local metric.
8 Clearly, for such very symmetric relaxed models with explicit first inte-
grals, the best phase-space estimator would involve moving to angle–action
variables and making use of the fact that the distribution function should not
depend on the angles; since our purpose is to estimate phase-space density
in more realistic settings this venue is not explored here. Note none the less
that the validation is carried here in this regime, which strictly speaking does
leave open discrepancies for a very unmixed system.

Combining this equation taken at the virial radius with equation (15)
gives the total halo mass

M = h2a3c(c + 1)2

G
. (21)

In practice, the profile is also cut off at a radius rcut, i.e. all the
particles verify r < rcut. In what follows, a concentration parameter
c is defined such that rvir = ca, where rvir is the virial radius.

For our test sample, we take 5 × 105 particles, rvir = 320 kpc,
rcut = 5rvir, h = 0.7 and c = 4. For both the Hernquist profile and
the Hernquist composite profile (next subsection), we measure f
in units of M−1(GMa)3/2. This choice of parameters was meant to
compare directly our measurements with S06. Note however that
our value of rcut is much smaller than that of S06 to make DTFE
method tractable. Without such a cut-off, we would indeed have too
many neighbours for the particles near the edge. This abrupt cut-off
might a priori introduce some contamination for f � f min, where
fmin is the value of the phase-space distribution function at r = rcut

and v = 0 (log f min = −4.41 in our units). Yet, we have checked,
by taking very large values of rcut that our implementation of the
EnBiD estimator is quite consistent with that of S06.

Fig. 4 shows the ratio b = f /f t between the estimated phase-space
density f and the analytical result, ft given by equation (18), as a
function of ft, for various smoothing methods, as indicated on the
top of each panel.

For SPH-AM with 10 neighbours, we get a good approximation
of ft over about nine decades delimited by the two vertical dashed
lines. These lines correspond to a fivefold relative error on the deter-
mination of the phase-space density compared to the exact solution.
With 40 neighbours, the spread drops down by almost a factor of
2, but at the cost of a narrower available dynamic range, because
of the bias introduced by the softening of the sharp transitions be-
tween overdense and underdense regions and nearby local extrema
(see also the discussion in Section 2.3). This effect is therefore
even more prominent for SPH-AM 200. The FiEstAS algorithm
with EnBiD improvement and mp = 2.0 gives a spread compara-
ble to SPH-AM with around 20 particles, but the range of accurate
phase-space estimation is smaller as there is a noticeable bias in
the high-density region. For Anisotropic SPH-AM, 64 particles are
used to find the best fitting local ellipsoid while softening is per-
formed over 40 particles. In this case, the plot looks almost the same
as for SPH-AM with a small overall systematic overestimation of
the true phase-space density, which remains despite the kernel bias
correction.

For DTFE and standard SPH methods, we have to set the global
position–velocity scaling factor SG, where v = SGr. We use the
two methods described in part (i) of Section 2.4.2. The first one
gives SG = SI = 1.0 h km s−1 kpc−1 while the second one, relying
on peak matching of the distance distribution, gives SG = Sdist =
0.4 h km s−1 kpc−1. For both standard SPH and DTFE, we find that
Sdist leads to a small but noticeable improvement of a few per cent
for the phase-space density estimate compared to SI . As shown on
Fig. 4, the SPH method with the Sdist scaling and 10 neighbours
performs less well without the adaptive metric correction, although
it recovers correctly the middle range of f values. Note that, contrary
to the SPH-AM case, no edge effect correction is performed for the
pure SPH case, which explains the small depression seen at f 
10−4.5, due to the cut-off at rcut.

Turning to the DTFE method, a simple estimation given by equa-
tion (2) is closest to SPH with 10 neighbours, in terms of scatter.
However, within our (generous) allowed factor of 5 margin for the
phase-space density, we observe that the DTFE method probes the
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Figure 4. The ratio b = f /f t between the measured phase-space distribution
function, f, and the analytical value, ft, as a function of ft, derived for an
isotropic Hernquist profile and different smoothing methods as indicated
on the top of each panel. From left- to right-hand side and top to bottom:
(a) SPH with local adaptive metric and 10 neighbours, (b) SPH with local
adaptive metric and 40 neighbours, (c) SPH with local adaptive metric and
200 neighbours, (d) anisotropic SPH with local adaptive metric and 40
neighbours, (e) FiEstAS algorithm with EnBiD improvement and mp = 2.0,
(f) SPH with 10 neighbours, (g) DTFE method and (h) DTFE with spherical
sphere smoothing. These 2D histograms are calculated using 400 × 400
logarithmic bins. The central curve corresponds to the median value of b
calculated over 200 logarithmic bins along the x-axis, taking into account
only bins containing two particles or more. The two additional curves on
each side show 3σ errors estimated from the dispersion above and below
the median curve. The two dashed vertical lines mark the range for which
the median departs by more than a factor of 5 from ft. The mean log ratio
〈log b〉 and its dispersion, σ =

√
〈(log b − 〈log b〉)2〉, are indicated on each

panel and were computed using all the data.

low-f range nearly one order of magnitude further, while it seems
to do worse in the high-density regime. Note the bump at f 
10−4 seen in the lower left-hand panel of Fig. 4 in addition to the
neighbouring depression already noted for SPH, here at f  10−5.
It is a consequence of the brutal cut-off at rcut, combined with the
strong effects of anisotropy in phase space near the edges: indeed,
for f � 10−5, the number of neighbours defined by the Delaunay
cells starts to increase dramatically (see Fig. 13 in Section 4.1).

We checked alternate smoother DTFE interpolators discussed in
Section 2.1, and found that the best one is the ‘spherical’ smoothing
implementation given by equation (8). This solution, shown on
Fig. 4 presents less scatter than the simple DTFE and a slightly better
behaviour with respect to edge effects, at the cost of a significant
reduction of the available dynamic range, which covers only about
seven decades.

Another way to test our estimators, following Arad04, involves
measuring the probability distribution function of f, which is, within
a normalization factor, the differential volume

v(f ) = dV

df
, (22)

where V(f 0) is the volume in phase space occupied by the excursion
f > f 0:

V (f0) =
∫ ∞

f0

v(f ′)df ′ =
∫

f (x,v)>f0

d3xd3v. (23)

For an isotropic Hernquist profile, the function v(f) can again be
computed analytically (see section 3.1 of S06 for details).

The measurement of v(f) is straightforward when one considers
the simplest implementation of DTFE as V(f 0) is given exactly in
that case by

V (f0) =
∑
fv>f0

mp

fv

. (24)

For other methods, equation (24) is only approximate. The loga-
rithmic derivative of function V is then obtained by simple finite
difference in log f space using 100 bins, using three points interpo-
lation.

Following Arad04, let us also estimate the logarithmic slope, α,
of the function v(f),

α(f ) = d log[v(f )]

df
, (25)

since it represents a more discriminant measure of the phase-space
density than v(f) itself.

smooth DTFE
DTFE
FiEstA(EnBiD corr.) M=2
SPH-AM 40
SPH-AM 10

Figure 5. Hernquist profile: measurement of v(f ) (left-hand panel) and its
logarithmic slope (right-hand panel) with different phase-space estimators.
The dashed line corresponds to the analytical solution. The vertical dashed
line marks the value log f min = −4.41, corresponding to the cut-off of the
halo at five virial radii.
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This is illustrated by Fig. 5, which compares to the analytical
solution the measured v(f) and its logarithmic slope. Note that,
because of our cut-off at 5.0rvir, v(f ) (and therefore its logarithmic
derivative) values are not expected to fit the analytical prediction
for log f � log f min = −4.41, since a fraction of the sample volume
V(f), is missing in that regime. All the methods reproduce quite
well v(f) and α(f ) above that value and in the mid-density regime.
In the high-density regime, the best results seem to be obtained
by SPH-AM with 10 particles, but the measurements are too noisy
to be definite: one can see that SPH-AM with 40 particles and
FiEstAS with EnBiD correction do as well at least for f � 1. On
the other hand, the DTFE method behaves quite poorly in the high-
density regime, while its smoother counterpart is even worse, which
confirms the results of Fig. 4. However, we shall see that this is a
consequence of a suboptimal choice of the scaling between position
and velocities, as discussed in next section. Actually, with the proper
choice of SG, DTFE should give the best results in high-density
regions, as, by construction, it provides a full tessellation of space
with optimal calculation of neighbours: the combination of these
last two properties is critical to measure accurately an Eulerian
quantity such as v(f).

3.2 Hernquist composite profile

Our single isotropic Hernquist profile allowed us to separate well
the different density regimes. However, it is not realistic, since real
dark matter haloes exhibit non-trivial substructures. We therefore
now create a synthetic halo with a main component and smaller

Figure 6. The Hernquist profile with substructures in phase space. Upper left-hand panel: x–y position space; upper right-hand panel: vx– vy velocity space;
lower left-hand panel: phase-space diagram, radius r–radial velocity vr; lower right-hand panel: radial velocity vr–tangential velocity vt. Each plot is a 2D
histogram with 400 × 400 bins. Only the central part of the halo is shown here.

subhaloes. We still use the Hernquist profile as a guideline to be
able to perform analytical predictions.

For the main halo we use the same realization as before with
around 2.5 × 105 particles. Then we add 500 smaller haloes
which correspond to a scaled-down version of the main halo.
Their mass follow the following probability distribution function,
p(M)dM ∝ M−1.8dM, where M varies between Mmin =
0.000 25Mmain and Mmax = 0.06Mmain. The largest subhalo has
around 14 000 particles and the smallest one, around 60. In to-
tal, the system involves, as before, 5.0 × 105 particles, and around
50 per cent of them belong to substructures. This fraction is larger
than what is found in cosmological simulations, but we prefer this
ratio given its higher level of anisotropy. Each subhalo phase-space
coordinate centre is set randomly following the same Hernquist
distribution as for the main halo.

Fig. 6 presents the halo in various projections. As illustrated by
the top panels, we can see clearly that the structures are more con-
centrated in position space than in velocity space, a feature also
observed in N-body haloes (see e.g. Fig. 11). The bottom pan-
els correspond to phase-space diagrams, in radius/radial velocity
subspace (lower left-hand panel) and in radial velocity/tangential
velocity subspace (lower right-hand panel). To draw them, we com-
pute for each particle the distance r from the centre of the main halo
and the relative radial velocity as follows:

vr = 1

r

∑
i

(xi − xc,i)(vi − vc,i), (26)

where i = 1, . . . , 3 corresponds to the coordinate, while xc and vc are
the position and velocity of the centre of the main halo, respectively.
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Figure 7. Comparison with the analytical prediction of numerically estimated phase-space density from various contribution of our composite Hernquist halo.
The measurement is performed with SPH-AM method using 40 neighbours. The quantity displayed is f /f t as a function of ft, where f and ft are the measured
and the analytical phase-space distribution functions, respectively. Left-hand panel: main component only. Middle panel: subhaloes, only. In that case the ratio
f /f t is computed for each subhalo, individually. Right-hand panel: the full profile, with haloes and subhaloes, while ft is given by the sum of each analytical
profile contributing locally.

The tangential velocity is then given by vt = √
(v − vc)2 − v2

r .
Note the elongated vertical features in lower left-hand panel, which
illustrate again the smaller spread of substructures in position space
than in velocity space.

Fig. 7 shows the phase-space density estimated by SPH-AM
with 40 particles, for the main component, the subhaloes and the
full halo. While the theoretical density is a simple sum of all
the components contributing locally, it is not exactly the case for
the estimated density. By comparing all the plots, one can see
that the low-f regime and the high-f regime are dominated by the
main component and the subhaloes, respectively. For each compo-
nent, f presents a large spread in the low-density region, 10−4 � f
� 1, because of the high level of shot noise due to the small number
of particles in the edges of substructures, and is underestimated in
the high-density one. The range of accurate values of f increases
with the number of particles in each subhalo. When summing up
the subhaloes, as shown in middle panel, this adds up to a signifi-
cant spread of the scatter plot, obviously much larger than for the
main component. In fact, such a spread dominates for the total halo
(right-hand panel) and is larger than for a single Hernquist pro-
file with same number of particles (see Fig. 4). Because the high
phase-space density regime is dominated by subhaloes, the range
of recovered values of f is tremendously reduced in that region, and
we lose about one order of magnitude for the available high-density
range compared to the single Hernquist profile. This issue has to
be kept in mind when performing the measurements in real N-body
haloes.

Fig. 8, following Fig. 4, now compares the various estimators of
the phase-space density, and confirms most of our previous findings:
the best estimator is SPH-AM with 10 neighbours. It does better
than SPH-AM 40 in the high-density regions, because of the lower-
level of smoothing, at the cost of a larger spread. The effect is even
stronger when performing the comparison with SPH-AM 200, as
expected. Again, ASPH-AM with 40 neighbours seems to bring
some global estimation bias. EnBiD–FiEstAS with mp = 2 does not
perform any better than SPH-AM since it seems to underestimate f
earlier in the high-density regime.

Regarding the global scaling, the findings of Fig. 4 are confirmed:
we obtain the best results by matching the nearest neighbour dis-
tance distributions and we measure again (but this coincidence is
not generic) Sdist = 0.4 h km s−1 kpc−1). The suboptimal nature of
the global scaling induces an increase of the amplitude of the scat-
ter below the median, for instance when one compares SPH-AM
10 with SPH 10 on Fig. 8. Turning to DTFE in its basic imple-

mentation, which stills perform best for low values of f (except for
the irregularity already observed in Fig. 4), this spread becomes
dramatic and strongly asymmetric but can be reduced by using
the smoother and more isotropic ‘spherical’ interpolator f ′. Note
that, given our factor of 5 tolerance between measured and exact
phase-space density distribution function, DTFE and its smoother
version do better than in Fig. 4. In fact they now seem to perform
slightly better than SPH-AM 10 in the very high-density regime.
Indeed, the fraction of overdense particles intervening in the calcu-
lation of Sdist is much larger: the calculation of Sdist, corresponding
to a compromise between all the particles, is now more adapted
to the overdense part of the phase-space distribution function. For
the single Hernquist profile, the fraction of particles belonging to
the high-f part was indeed much smaller. Hence, provided that the
proper global scaling between velocities and positions has been set
up, DTFE chooses by construction the proper adaptive smoothing
range (or the right number of neighbours). However, note that the
overall shape of the median curve of Fig. 8 is not as flat as for SPH-
AM, and this is a consequence of the fact that the global scaling
is only a compromise that is not locally optimal. In fact, in addi-
tion to the small-f irregularity already observed in Fig. 4, the high-f
plateau in lower left-hand panel of Fig. 8 is somewhat below the
thick horizontal line. This follows from the presence of substruc-
tures, as discussed above, which does not only induces a strong
asymmetry of the spread around the median value: it also biases
it to lower values. This is because DTFE uses many neighbours in
that regime to perform the interpolation, (about 200 as will be dis-
cussed in next section, see Fig. 13), which makes it very sensitive
to the local anisotropies in the phase-space distribution function.
The bias on the high-f plateau is at least partly corrected for by the
‘spherical’ version of DTFE, which is indeed expected to less sensi-
tive to such anisotropies, as illustrated by lower right-hand panel of
Fig. 8.

To illustrate in more detail the influence of the choice of the
global scaling parameter, SG, between velocity space and position
space, Fig. 9 shows, for our composite profile, how the quality of
the measurement of f changes with SG for the SPH method with
40 neighbours (similar trends would be seen for the DTFE method,
while adaptive metric methods, e.g. SPH-AM with 40 particles, are
by definition totally insensitive to the choice of SG). The domain of
valid estimates for f considerably depends on the choice of SG, as a
change by a factor of 4 in SG induces a loss by an order of magnitude
in the high-density range. Note in particular that the shape of the
scatter, below the median curve, changes with the actual value of
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Figure 8. Same as in Fig. 4, but the ratio between measured and analytic
phase-space distribution function is now shown for our composite Hernquist
profile for various smoothing methods as indicated on the top of each panel.

SG. For instance, this scatter is reduced in the intermediate range of
values for f in the middle panel of Fig. 9. This is again a consequence
of the fact that the optimal value of SG depends on location in phase
space, in particular on the local distribution of velocities versus
positions in the core of substructures, i.e. in the neighbourhood of
local density peaks in phase space.

Following Section 3.1, let us finally turn to the measurement of
v(f) and its logarithmic derivative, α(f ), as illustrated by Fig. 10. The
analytic calculation of v(f) is similar to Section 3.1 except that we
now consider each component separately and then combine them
straightforwardly. The measurement v(f) itself is performed exactly
as explained in Section 3.1. The results of Fig. 8 are partly confirmed
by Fig. 10: the best adaptive metric method is again SPH-AM with
10 neighbours. However, the best measurements are by far now

given by the basic DTFE method (without additional smoothing).
Recall that this is due, in part, by the fact that the calculation of
v(f) is better behaved for the DTFE method than for other methods:
indeed the concept of Eulerian volume is well defined for DTFE,
while it remains only approximate with the SPH methods. These
methods are optimal when one sits on particles, but get more and
more inaccurate when one goes away from the particles. In that
sense, Fig. 8, which uses a pure Lagrangian point of view, greatly
favours the SPH methods, while the measurement of v(f), which is
intrinsically an Eulerian quantity, favours more DTFE.

Globally, the measurements in this section suggest that the
DTFE method performs rather well, provided that the correct po-
sition/velocity scaling is set up. However, the very calculation of
the correct value of the scaling factor, SG, is not straightforward: in
Section 3.1, the DTFE method was performing poorly. Even if it
is well estimated, this global scaling provides only a compromise,
which is not locally optimal.

Finally, let us mention some additional issues about the DTFE
method. While exploring various values of SG, we found that with
larger SG, this method starts to generate very large number of Delau-
nay cells which becomes rapidly impossible to handle computation-
ally. The same happens when we increase the cut-off radius rcut: in
that case, particles near the border of the catalogue present tremen-
dously large number of Delaunay cells, as they are connected to
almost all the other particles. Indeed, it is expected that a high level
of local anisotropy increases the number of DTFE neighbours.9 For
all these reasons, we favour the SPH-AM method relative to the
DTFE method, even if they seem to perform less well for the mea-
surement of Eulerian quantities such as v(f). Still, if one put aside
the problem of position/velocity scaling, the DTFE method provides
a local estimate of the optimal number of neighbours, which can
help to find the best number of neighbours for the SPH-AM method,
as we shall discuss in Section 4.1. Finally, while potentially better
than the SPH-AM method, the ASPH-AM methods tend to yield a
slight overestimation bias for the mid-range of values of f, and we
did not find a straightforward way to correct for it.

3.3 Haloes from N-body simulations

We now consider the realistic case of a halo extracted from a CDM
N-body simulation. To do that, we performed a standard CDM sim-
ulation with GAGDET2 (Springel 2005) involving 5123 particles in a
periodic cubic box of size 50 h−1 Mpc. The choice of the cosmo-
logical parameters is matter density �M = 0.3 and cosmological
constant �� = 0.7. The linear variance of the density fluctuations
in a sphere of radius 8 h−1 Mpc is σ 8 = 0.92 and the Hubble con-
stant fixes h = 0.7. This is slightly different from recent constrains
e.g. provided by Wilkinson Microwave Anisotropy Probe (Spergel
et al. 2003) but should be close enough for our purpose. For ref-
erence, these cosmological parameters fix the mass of a particle to
be 7.7 × 107 M�. Haloes were extracted at present time from this
simulation using standard FOF algorithm with linking parameter
b = 0.2. To make the calculations tractable for DTFE, we selected
the third most massive halo, which contains about 1.83 × 106 par-
ticles. Only the linked particles are considered. In the subsequent
analyses, calculations are performed in comoving phase-space coor-
dinates instead of physical ones. However, when it comes to phase-
space density calculation, the main change when passing from one

9 Note that a way to compute the optimal value of SG could involve mini-
mizing the total number of Delaunay cells.
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Figure 9. Effect of the choice of the scaling parameter SG between positions and velocities. The ratio f /f t is shown as a function of ft, following Fig. 8, but
for SPH method with 40 neighbours. From left- to right-hand side, SG = 0.25, 1, 4.0 h km s−1 kpc−1.

Figure 10. Measurement of v(f ) and its logarithmic derivative, following
Fig. 5, but for the composite Hernquist profile. The blue and red dashed
curves correspond to the analytical prediction for the main component and
the full halo, respectively. Note that, as discussed in Section 3.1, there is a
minimum value of f for which we can measure accurately v(f ), regardless of
the method used, due to the cut-off imposed at radius rcut (dashed vertical
line). This is now further complicated by the fact that here, the cut-off is
also imposed on the subhaloes, which explains why the measurements tend
to slightly overestimate the red dashed curve for 10−4 � f � 0.1.

system of coordinates to the other comes from the effect of the Hub-
ble flow, which has rather insignificant impact on the final results.

Fig. 11 displays various projections of the halo, following Fig. 6.
Here, only one additional complication arises in order to calculate
correctly phase-space diagrams: the centre of the halo has to be
defined accurately in phase space. We find this centre through an
iterative process, applied to each subspace separately. The first step
involves considering the centre as the mean position (velocity) of
all the particles. Then, the distance of each particle from this centre
is computed and half of the particles are removed by choosing the
most distant ones. A new centre is computed from the remaining
particles. The process is repeated again as long as there are more
than 100 particles left.

As noted earlier, the velocity subspace (upper panels of Fig. 11)
is relatively featureless. Fig. 11 is in fact very similar to Fig. 6,
except for the lower left-hand panel which displays more complex
structures. In particular, in addition to the vertical ‘fingers’, one
can note some elongated structures that correspond to non-trivial
filamentation of phase space built up by the dynamics, e.g. tidal
tails (see e.g. Peirani & de Freitas Pacheco 2007).

In this more realistic framework, we cannot rely on an analytic
expression of the reference ft to perform plots similar to Figs 4 and
8. However, since the SPH-AM methods have our preference, we
shall now use them as references. This is illustrated by Fig. 12,
which shows the ratio f /f t as a function of ft for various smoothing
methods; ft is given this time by the SPH-AM methods with 10 and
40 neighbours for, respectively, the left- and right-hand columns.
Note that f and ft are measured for each particle individually to per-
form these scatter plots. To fix the global scaling position/velocity
parameter for the DTFE implementations, we use a coincidence
scaling of the peak distance distribution given by SG = Sdist =
0.38 h km s−1 Mpc−1.

Fig. 12 confirms qualitatively the results found for the single and
the composite Hernquist profiles. In particular, the SPH-AM meth-
ods with 40 neighbours underestimate high phase-space densities
compared to the SPH-AM 10 method. In the upper left-hand panel
of Fig. 12, there is also a tail below the median curve, which arises
because the measured f is significantly biased towards lower values
nearby local phase-space density peaks corresponding to each sub-
structure, as explained in previous section; this local bias is more
prominent for the SPH-AM 40 than SPH-AM 10 method, and con-
sequently the median curve of the upper left-hand panel is slightly
below unity, except for low-f. This bias can be reduced with adap-
tive smoothing, as shown in the second row of Fig. 12 with the
ASPH-AM 40 method. But recall that this is achieved at a price
of a slight uncontrollable positive bias, here in underdense phase-
space regions. The DTFE method seems to behave well overall,
with a positive bias in underdense phase-space regions when imple-
menting its smoother version. However, our appreciation is again
skewed by the somewhat loose factor of 5 tolerance. In fact, DTFE
in its simpler implementation seems to globally underestimate the
phase-space density distribution function, except in the very low-
density and in the very high-density regimes. Again, this is due to
the contribution from substructures, which is now more significant
given the larger effective number of neighbours used by DTFE and
its high sensitivity to the choice of the local scaling, SG. The effect
of the tail below the median value is therefore now more significant
than for the upper left-hand panel, and it is reduced, as well as the
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Figure 11. Appearance of our CDM N-body halo with 1.8 million particles. This figure can for instance be compared to Fig. 6. Upper left-hand panel: x–y
position space; upper right-hand panel: vx– vy velocity space; lower left-hand panel: phase-space diagram, radius r–radial velocity vr; lower right-hand panel:
radial velocity vr–tangential velocity vt.

bias of the median curve in intermediate values of f, by the spherical
implementation (lowest panels of Fig. 12). Hence Fig. 12 globally
confirms the findings of Fig. 8. Note that we do not observe any
irregularity in the low-f regime as in Fig. 8, because the cut-off of
the halo is performed in a much smoother way.

4 A D D I T I O NA L IN S I G H T S

Although the Delaunay tessellation cannot easily address the prob-
lem of the position/velocity scaling, because of it self-adaptive na-
ture, it still provides some insight about the local neighbourhood,
in particular about the optimal number of neighbours that should
be used in SPH methods. In Section 4.1, we analyse in details the
neighbour distribution provided by the Delaunay tessellation. This
will help us to better understand the results found in the previ-
ous sections and to further justify our preference for the SPH-AM
estimator with a number of neighbours ranging from 10 to 40.

The analyses of Section 3 show that the entropy method imple-
mented in EnBiD provides a very good approximation of the local
scaling to apply between positions and velocities. In Section 4.2,
we investigate how this scaling depends on the environment, and in
particular on the value of f. This will allow us to better understand
to choice of the global scaling.

4.1 Smoothing range and local neighbourhood

In Fig. 13, we study the distribution of the number of neighbours
built by the Delaunay structure as a function of phase-space density,

for the single Hernquist profile of Section 3.1 (upper right-hand
panel), the composite Hernquist profile of Section 3.2 (lower left-
hand panel) and the N-body halo of Section 3.3 (lower right-hand
panel). The upper left-hand panel shows, for each instance, the
overall distribution function of the number of neighbours.

As expected, the average number of neighbours is approximately
the same in the three cases: 〈N〉 = 175, 165 and 167, for the
Hernquist profile, the composite Hernquist profile and the N-body
halo, respectively. The presence of substructures widens the over-
all distribution of values of N, as shown by the green and the red
curves in upper left-hand panel of Fig. 13, as compared to the
black one. In the three cases considered, the typical number of
neighbours decreases with increasing phase-space density, follow-
ing three regimes.

(i) Particles near the edges: At the edges of the catalogue, where f
is very small, N is very large, of the order of 1000 for the Hernquist
cases up to nearly 10 000 for the N-body halo. It then decreases
rapidly, while particles are getting away from the edges to reach
the next regime, (ii). Note that N being large is not a consequence
of f being small, but follows from the fact that the phase-space
distribution function presents an overall positive curvature and is
highly anisotropic because of the edges.

(ii) The plateau at intermediate values of f, far from the edges
and from the main distribution of local maxima: In this quiescent
regime, we have N ∼ 〈N〉, where 〈N〉 is the typical number of
expected Delaunay neighbours just as quoted above. Note that there
is a slight difference between the Hernquist profiles and the N-body
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Figure 12. Phase-space density estimation for our CDM N-body halo with
1.8 million particles. The left- and right-hand columns correspond to the
SPH-AM method with 10 and 40 neighbours, respectively, for the theo-
retical phase-space density, ft. From top to bottom, the smoothing method
considered is (a) the SPH-AM method with 40 neighbours on the left-hand
panel and SPH-AM with 10 neighbours on the right-hand panel, (b) the
ASPH-AM with 40 neighbours on the left-hand side and ASPH-AM with
10 neighbours on the right-hand panel, (d) the basic DTFE method and (e)
DTFE method with spherical smoothing.

halo, in particular a lower bump at f  10−4.5 in upper right-hand
and lower left-hand panels, which corresponds to the transition
between regimes (i) and (ii), and which does not appear for the
N-body halo. This is probably due to the brutal cut-off imposed
at radius rcut as mentioned in Section 3.1, which can affect the
neighbour distribution in a non-trivial manner up to f  10−4.41

for the single Hernquist profile and the main component of the
composite Hernquist profile.

(iii) The high-density regime, dominated by the regions nearby
local maxima: The number of neighbours decreases again rapidly

because f now presents an increasingly overall negative curvature
when one reaches the densest regions, which makes N smaller; we
measure it to be as small as 30 in the presence of substructures
(which dominate large values of f, as noted in Section 3.2), while it
remains close to 100 in the single Hernquist profile.

Intuitively these numbers suggest that, when turning to SPH meth-
ods, the number of neighbours used to perform the interpolation
should depend on the environment. In particular, in the ‘quiescent’
regime, i.e. far from the edges and from the peaks, we should take
around 200 neighbours to perform the measurements. However,
such a large number of neighbours are not optimal near the peaks:
the DTFE algorithm suggests a value of N of the order of a few tens
for sampling best the core of substructures, which is fully confirmed
by the analyses of our previous sections. Furthermore we noted that
these values of N = 10 and 40 are still appropriate in the quies-
cent regime: only the signal-to-noise ratio – the spread due to local
Poisson noise around the local average value – is changed. Taking a
value of N as large as 200 provides too much smoothing and biases
the results in overdense regions. Moreover it also induces non-trivial
diffusing mixing effects. The larger the number of neighbours, the
more sensitive the determination of f to local anisotropies.

Such local anisotropies (and local curvature properties) can be
captured better – at least partly – by anisotropic SPH smoothing
(see the discussion in Section 2.3 and Fig. 2), but at a risk of
some potential slight positive biases, as argued previously. Since
SPH methods in their usual implementation are not self-adaptive
in terms of their number of neighbours,10 we think that the best
choice for N is a value ranging from 10 to 40, because such a choice
offers a good compromise for all the dynamic range. Note that this
also confirms the findings of S06. There is still the problem of
what happens near the edges, but these can sometimes be extended
sufficiently far away to avoid contamination of the measurements in
the region of interest. What really influences the results are abrupt
changes of local curvature: while the DTFE method captures them
optimally, SPH method does it only approximately, and of course,
does it best when the number of neighbours remains small, at the
expense of a slightly worse local signal-to-noise ratio.

Note, however, that this discussion is again biased by the fact
that SPH uses a Lagrangian point of view, i.e. it sits on the centre
of each particle to measure locally the phase-space distribution
function. An Eulerian point of view, which would require to measure
f in an arbitrary point of space (see e.g. Colombi, Chodorowski &
Teyssier 2007), would probably impose a slightly larger number of
neighbours for SPH methods to give sensible results.

Note finally that the findings of Fig. 13 are of course sensitive
to the choice of the velocity/position scaling SG which is taken
here to be equal to Sdist as discussed in previous sections. Indeed,
the value of SG influences the properties of the local curvature of the
distribution function (or the matrix of its second derivatives), so we
expect the low-f and particularly the high-f regimes to be affected
by the chosen SG (Fig. 9).

4.2 On the EnBiD position–velocity scaling

In the EnBiD algorithm, one gets for each particle a hyperbox of size
2sx in position subspace and of size 2sv in velocity subspace. Fig. 14
shows the measured value of sx , sv and SG = sx/sv as functions of

10 It should be however rather easy to implement SPH smoothing with a
number of neighbours varying with the environment.
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Figure 13. Number of neighbours N found by the Delaunay tessellation
for the three profiles considered in this paper. Top left-hand panel: the
probability distribution function, P(N), for a particle of having N neighbours.
Top right-hand panel: N is shown as a function of the theoretical phase-space
density, ft, for our single Hernquist profile. The horizontal line corresponds
to the mean value of N, while the smooth black curve gives the median
as a function of ft. Bottom left-hand panel: N is shown as a function of
the theoretical phase-space density, for our composite Hernquist profile.
Bottom right-hand panel: N is shown as a function of the phase-space density
measured in our dark matter simulated halo.

f, for our composite Hernquist profile (left-hand columns) and our
N-body halo (right-hand columns). The global behaviour of the
quantities sx(f ) and sv(f ) as decreasing functions of f (the median
curves in the four upper panels of Fig. 14) is expected, as increasing
phase-space density corresponds to a smaller size for the local hy-
percube. Due to the more concentrated extension of substructures
in position rather than in velocity space, the corresponding decrease
is more significant for sx(f ) – by an order of magnitude – than for
sv(f ) – by about a factor of 2. As a result, the ratio SG = sx/sv

changes from about 1.3–0.7 in the low-f regime to 0.4–0.3 in the
high-f regime (see the median curve in two lower panels of Fig. 14).

When examining in more details the scatter plots on the right-
hand panels of Fig. 14, we note a bimodal structure: the cloud of
points splits into two fingers at high f. The shorter and denser finger
corresponds to the main part of the halo, while the other corresponds
to the contribution of substructures, which are more concentrated
in phase space than the central part of the halo. This last statement
can be easily checked by looking at the upper right-hand panel of
Fig. 18. The main part of the halo is globally relaxed so its concen-
tration in velocity space does not depend significantly on the value
of f (the upper horizontal finger in the middle right-hand panel of
Fig. 14), while its position density behaves approximately like a
power law (lower roughly straight and diagonal finger in the upper
right-hand panel of Fig. 14). On the other hand, substructures are
tidally disrupted and lose particles while they spiral into the halo:
they represent a population of objects at various dynamical states,
different from the dynamical state of the main part of the halo. This
explains the bimodality observed in right-hand panels of Fig. 14. It

Figure 14. Local position–velocity scaling given by the EnBiD algorithm
as a function of phase-space density. The left- and right-hand columns cor-
respond to the composite Hernquist profile of Section 3.2 and the simulated
halo of Section 3.3, respectively. From top to bottom: the position subspace
scaling, sx , the velocity subspace scaling, sv , and the ratio SG = sx/sv . In
the left-hand panels, the phase-space density is the theoretical one. In the
right-hand panels, it is measured in the sample using SPH-AM with 40
neighbours.

would however go beyond the scope of this paper to fully explain
the details of this bimodality. It is indeed difficult to disentangle
the effect of the local change of substructure phase-space/velocity
subspace/position subspace profile due to tidal deformation, in par-
ticular to a mass-loss, from the statistical averaging carried over the
population of all the substructures.

Note that, even though the prescription used to create the Hern-
quist composite profile is dynamically unrealistic, there still should
be a bimodal effect in this experiment, because the substructures
present a population of objects at various ‘dynamical states’, differ-
ent from the main component, owing to the fact that they are less
massive. However, in addition to having unrealistic individual pro-
files, the contribution of substructures was purposely exaggerated:
they are more massive than those of the simulated halo. Conse-
quently, the bimodality is much less obvious on the left-hand panels
of Fig. 14 than on the right-hand panels. Of course, this difference
only partly accounts for this finding, as tidal stripping changes the
individual profiles of subhaloes (Stoehr 2006) and also produces

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 393, 703–722



718 M. Maciejewski et al.

tidal tails that contribute in a non-trivial way to filamentation of
phase space.

The bimodal nature of the distribution of the ratio sx/sv has a
dramatic impact on methods which rely on a global scaling between
positions and velocities prior to the measurement of the distribution
function. Furthermore, apart from that problem and the large scatter
of this ratio (of about one order of magnitude), its median value
changes with f, as mentioned earlier. Note however the plateau
reached at high values of f, a regime dominated by substructures,
where sx/sv  0.3. The global average of the ratio is equal to 0.7
and 0.5 for the Hernquist composite profile and the simulated halo,
respectively, while Sdist = 0.4 and 0.38. It is important to note that the
values of Sdist are thus close to the high-f plateau, showing that high
values of f are expected to be calculated with nearly optimal scaling
parameter using our peak matching of the distance distribution.

5 R EVISITING A PROX Y TO PHASE-SPACE
ESTIMATION

Prior to the existence of 6D phase-space density estimators, an
approximation of the phase-space density was proposed, which
involves only the measurement of quantities in position space rather
than in full 6D phase space (see e.g. Taylor & Navarro 2001):

Q(x) = ρ(x)/σ 3(x), (27)

= 33/2

[∫
f (x, v)d3v

]5/2[∫
v2f (x, v)d3v

]3/2 , (28)

where ρ(x) is the local projected density and σ 3(x) is the local

1D velocity dispersion defined as σ =
√

(σ 2
x + σ 2

y + σ 2
z )/3. The

function Q(x) has been widely used in the literature as a proxy of
the true ‘phase-space’ distribution function (Taylor & Navarro 2001;
Rasia, Tormen & Moscardini 2005; Austin et al. 2005; Diemand,
Kuhlen & Madau 2006; Peirani & de Freitas Pacheco 2007). It
is often defined in a spherically average way, Q(r) = ρ(r)/σ 3(r).
For instance, Taylor & Navarro (2001) found that Q(r) ∝ r−α with
α = 1.875, in good agreement with the secondary infall model
(Bertschinger 1985).

To relate Q(x) to the true phase-space density in a more intuitive
way than equation (28), we can assume that f (x, v) factorizes as
follows:

f (x, v) = ρ(x)

(2π)3/2σ 3(x)
exp

{
− [v − v0(x)]2

2σ 2(x)

}
, (29)

where proper normalizations were set up directly. Hence,

f (x, v) = Q(x)
1

(2π)3/2
exp

{
− [v − v0(x)]2

2σ 2(x)

}
. (30)

In particular, Q(x) = f [x, v0(x)](2π)3/2. We see that, within a nor-
malization factor, function Q(x) is representative of the true phase-
space distribution function where it matters, i.e. in the neighbour-
hood of local maxima in velocity space. Of course, this argument is
valid only if at fixed x = x0, the function g(v) = f (x0, v) presents
only one local maximum in v space. If this condition is verified,
we could expect the function Q(x) to represent a fair estimate of
the true phase-space distribution function near the local maxima in
phase space, which correspond to substructures. However, this is
not strictly true since substructures a embedded in the background
of the main component of the halo: σ (x) is not the local velocity

Figure 15. True phase-space density estimator (left-hand panel) versus the
proxy Q = ρ/σ 3 in our Hernquist composite profile. The ratio f /f t is shown
as a function of ft, where f and ft are the measured and the exact phase-space
densities, respectively. To generate the left-hand panel, we used SPH-AM
with 40 neighbours. To measure the function Q(x) on the right-hand panel,
we use a standard SPH interpolation in position space with 32 neighbours
to estimate locally ρ(x) and measure the velocity dispersion σ 2(x) with the
same position space kernel.

dispersion of the substructure but rather the local velocity disper-
sion of the diffuse component, which is much larger. We therefore
expect Q(x) to underestimate the true distribution function in sub-
structures, corresponding to the high-f regime, which is dominated
by these clumps. On the other hand, when considering the main
component of the halo, which dominates the low-f regime, we ex-
pect Q(x) to overestimate the true distribution function, as, f (x,
v) < f (x, v0) for v �= v0 in equation (29). These arguments rely
on the very simple modelling given by equation (29), but they are
confirmed by Fig. 15, which compares the measured function Q(x)
to the exact solution for the Hernquist composite profile studied in
Section 3.2. Similar trends are observed for the simulated halo, not
shown here.

Clearly, the function Q corresponds to a serious shortcoming
when compared to the realistic phase-space estimators studied in
this paper. However, it seems to capture the main features of the
distribution function, as illustrated by Figs 16 and 17. These figures
compare, in various subspaces, the structures obtained when colour
is coded by projected density ρ(x), using the parameter Q(x), and
by phase-space density. They are supplemented with Fig. 18, which
shows ρ, Q and f as functions of distance r from the halo centre.
Note interestingly that, both for the 6D estimator and its proxy Q,
the maximum value of phase-space density in substructures seems
to be approximately the same for all the substructures (and larger
than at the centre of the halo). This property is quite useful as it
makes substructure detection quite easy with simple FOF algorithm,
as proposed by Diemand et al. (2006). These authors do not use the
true phase-space distribution function but the function Q to carry
the detection.

While pure projected density codes provide much less informa-
tion than phase-space density ones, the Q(x) function seems to cap-
ture the most important features of phase space, and in particular
subhaloes. However, the true phase-space density provides addi-
tional crucial information, in particular subtle phase-space struc-
tures such as the fine filaments observed in the (r, vr) diagram,
some of which being at the origin of caustics, others corresponding
to tidal tails. In a forthcoming paper, we shall discuss the detection
and analysis of substructures in phase space. We shall see that anal-
ysis of substructures in phase space can be used to infer powerful
properties on the dynamical history of dark matter haloes.
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Figure 16. Appearance of the CDM N-body haloes in position space (left-hand panels) and in velocity space (right-hand panels), with different colour codings.
The pictures are computed in three steps as follows: (i) division of space into 3D equally spaced grid with N = 400 divisions across each x-, y-, z-axes, (ii)
calculation of the mean density (ρ, f , Q) of all particles inside each cell and (iii) projection of this density on the xy plane by taking in each z column the cell
with the highest density. Only 40 per cent of the central cells along the z axis are used for the last step. The first, second and third rows correspond, respectively,
to a colour coding with the projected density ρ, with the parameter Q = ρ/σ 3 and with phase-space density f. To enhance the contrasts, the equalization of the
histograms of the logarithm of ρ, Q and f was implemented.

6 SU M M A RY

We devoted this paper to the study of 6D phase-space density es-
timators in N-body samples. We considered several methods used
in the literature to estimate phase-space density that differ from

each other (i) in the way the tessellation of space is performed and
(ii) in the way local interpolation is performed. Concerning point
(i), we consider two kind of tessellations: the Delaunay tessellation
(DTFE) proposed by Arad04 through the SHESHDEL algorithm
and the hierarchical decomposition of phase space using binary tree
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Figure 17. Appearance of the CDM N-body haloes in radius/radial velocity space (left-hand panels) and in radial/tangential velocity space (right-hand panels),
using the same colour coding rules as in Fig. 16, namely using ρ, Q and f for the first, second and third rows, respectively.

technique as proposed by A04 through the FiEstAS algorithm, later
improved by S06 with the EnBiD implementation. In class (ii), we
consider two ways of estimating the phase-space density for the
DTFE method, one based on the direct estimation of the local De-
launay cells volumes, and a more isotropic, smoother version of
it. For the binary tree method, we consider the hypercubical cell

smoothing proposed in FiEstAS and the standard SPH smoothing
(but in 6D instead of 3D) using an Epanechikov kernel as advocated
by S06. We also test an anisotropic SPH method (ASPH).

In all these methods, a crucial problem is to set properly the
local metric frame to relate position and velocities, which basically
sets a scaling factor between the position and the velocity subspace.
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Figure 18. Measured densities, from left- to right-hand side, ρ, Q and f, as functions of distance r from the halo centre in our CDM N-body halo. For the top
and bottom rows, the density is represented as a function of log r and r, respectively, while the thick line is calculated by taking local median.

While the binary tree methods can be optimized locally both through
their refinement and through the definition of such a system of
coordinates – using a Shannon entropy criterion, as advocated by
S06 and implemented through the EnBiD algorithm, a global metric
must also be defined for the DTFE method, prior to the construction
of the tessellation network.

In order to automatically specify a global metric, we presented
two methods which yield similar results. The first one involves sim-
ple dynamical arguments based on the properties of NFW profiles.
The second method involves measuring the nearest neighbour dis-
tance distributions in position and in velocity subspace and finding
the scaling factor between position and velocities for which the
positions of the peak of these two distributions match each other.

To summarize, we tested the following implementations.

(i) The DTFE algorithm and a smoother, more isotropic version
of it. Both of them require the definition of a global metric.

(ii) The FiEstAS binary tree method with EnBiD improvement.
(iii) SPH methods (i) with EnBiD improvement and (ii) without

it. We denote case (i) by SPH-AM, i.e. SPH with adaptive metric,
in opposition to case (ii) that we simply denote by SPH; which
requires a global metric setting.

(iv) Adaptive SPH methods with adaptive metric (ASPH-AM).

To test the various algorithm in details, we used three halo models.

(i) A Hernquist isotropic profile with 5 × 105 particles. In that
case, analytical estimates are available for the phase-space distribu-
tion function.

(ii) A composite Hernquist halo, built from a main component
with 2.5 × 105 particles, and a set of substructures amounting to

2.5 × 105 particles. In that more realistic case, there is also an exact
expression for the phase-space distribution function.

(iii) An N-body halo with 1.8 millions particles extracted from a
standard CDM simulation.

The main results of our analyses are the following.

(i) Because they are local and adaptive, the SPH-AM methods
provide the best estimators for the phase-space density, when using
a moderate number of neighbours, ranging from 10 to 40 in order
to perform the interpolation.

(ii) While DTFE estimators are in principle better than SPH es-
timators when one measures Eulerian quantities (not centred on the
particle positions), they generally perform poorly in phase space
because they rely on a global metric setup. A dynamically consis-
tent measurement of the phase-space distribution function requires
that the scaling between positions and velocity be locally adaptive.
The best compromise, without supplementary assumption on the
dynamical history of the system, is achieved by enforcing local
isotropy in phase space: this is achieved in practice by the Shannon
entropy criterion used in EnBiD. Note finally a last weakness of
DTFE methods: they are extremely costly from a computational
point of view compared to SPH-AM, both in terms of computer
time and memory.

(iii) While the optimal number of neighbours should typically be
around 200 as suggested by DTFE, we find, using also DTFE, that it
should be around a few tens near high-density peaks, which justifies
the low value we suggest to use for the SPH-AM method: such a
number increases signal-to-noise ratio, but allows us to probe better
high phase-space density peaks.

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 393, 703–722



722 M. Maciejewski et al.

(iv) By analysing the properties of the local metric proposed by
EnBiD, we find that the distance distribution matching method pro-
vides a global scaling between positions and velocities which probes
well the high-density regions of phase space, which are dominated
by substructures. We also find that the actual ‘optimal’ local scaling
presents a bimodal distribution, made from the contribution of the
main component of the halo, roughly in equilibrium, and the contri-
bution of the substructures, which are tidally disrupted while they
spiral in within the halo. This bimodality and the corresponding
large scatter of about one order of magnitude on the local scaling
parameter between positions and velocities has a dramatic impact
on the performance on methods relying on global metric setting,
such as DTFE.

(v) The ASPH-AM methods do not bring much improvement
over the SPH-AM implementation. They can potentially improve
phase-space estimation in high-density regions, but at the cost of
a slight systematic overestimation bias in the moderate density
regime.11

Note that most of our estimators are Lagrangian in nature, i.e. they
estimate phase-space density at particles positions: in that sense
they favour the SPH approach relatively to the DTFE approach.
One has to keep in mind that DTFE tessellates accurately all space,
while the SPH smoothing becomes increasingly suboptimal while
departing from the particles. In particular, we found that an Eulerian
quantity such as v(f) was still best measured by DTFE, despite the
problem of the suboptimal position/velocity scaling.

Alternative routes to phase-space density estimation could in-
volve using the angle–action canonical variables which match the
closest spherical fit to a given halo. Indeed, the topology of the
underlying tori would provide a natural setting in which to coarse
grain the distribution.
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